T -test

T-test: Test between the means of two groups

Experiment group	Control group
9	4
8	5
11	3
8	5
5	6
5	6
8	7
9	4
5	3
10	8
Mean= 7.80	Mean= 5.10
$SD=2.15$ $SD^2=4.6$	$SD=1.66 SD^2=2.77$
N=10	N=10

$$T = \frac{\text{mean group}_{1} - \text{mean group}_{2}}{\left[\frac{(n_{1}-1)SD_{1}^{2} + (n_{2}-1)SD_{2}^{2}}{n_{1}+n_{2}-2} \right] \left[\frac{n_{1}+n_{2}}{n_{1}*n_{2}} - \frac{n_{1}+n_{2}}{n_{1}*n_{2}} \right]}$$

 $T_{calculate} = 3.14$

Degree of freedom= n_1+n_2-2

= 18

Two tail test

Degree of freedom	0.05
18	2.10

If $T_{calulate} > T_{table} \longrightarrow$ There is a significant